7 November 2023

HPC for Elementary Particle Physics

Antonio Rago

Particle Physics ...

* The question: What are the fundamental constituents and fabric of the universe and how do they interact?

h THEORY CENTER SDU

$$\operatorname{Tr}\left(F^{\mu\nu}F_{\mu\nu}\right) + \frac{\theta}{64\pi^{2}}\operatorname{Tr}\left(G^{\mu\nu}\tilde{G}_{\mu\nu}\right) + |D_{\mu}\phi|^{2} + \mu^{2}\phi^{\dagger}\phi - \lambda(\phi^{\dagger}\phi)^{2} D^{\mu}\gamma_{\mu}\psi_{L} + i\overline{\psi}_{R}D^{\mu}\gamma_{\mu}\psi_{R} - \left(\lambda_{ij}^{d}\overline{\psi}_{iL}\phi\psi_{jR} + \lambda_{ij}^{u}\overline{\psi}_{iL}\tilde{\phi}\psi_{jR}\right) + \mathrm{h.c.}$$

$$=\frac{Y_{\alpha\beta}}{\Lambda_{\rm LNV}}\left(\overline{L_{\alpha}^c}\tilde{\phi}^*\right)\left(\tilde{\phi}^{\dagger}L_{\beta}\right)$$

$$a^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right)$$

Many open questions

What are the laws of physics operating in the early Universe?

What are the **fundamental particles** and fields?

What is the **nature of space-time**?

What is the nature of **dark matter** and **dark** energy?

Why is there **more matter than antimatter**?

SDUA

Einstein's dream: unify all forces SDU

Elementary particles ... in theory

A simple and elegant theory:

the Standard model of Elementary Particles

19+7 free parameters (masses and couplings)

Switch on your experiments and start to count.

For each possible set of decay products, plot the fraction of collisions in which those decay products are produced against the total energy of the particles coming into the collision.

... and compare with your predictions

Quantity Measured (GeV)

Mass of W boson

 80.387 ± 0.019

Mass of Z boson

 91.1876 ± 0.0021

... a race for **precision**!

SM prediction (GeV)

 80.390 ± 0.018

 91.1874 ± 0.0021

... and compare with your predictions

Measured (GeV) Quantity

Mass of W boson

 80.387 ± 0.019

Mass of Z boson

 91.1876 ± 0.0021

... a race for **precision**!

Only a fine-grained control of all the contributions included in the Standard Model can show verification or tension in our predictions!

different frameworks

There are however known non-perturbative effects which are not captured in perturbation theory.

SDU

Can be studied in perturbative **Quantum Field Theory**

The quantum observables are formal power series in the coupling constant which measures the strength of the interaction.

What about (super)computers?

... a long lasting relation

"1986: First commercial AI supercomputer modelled after the human brain "The Connection Machine CM-1¹⁷ was the first commercial supercomputer designed expressly for problems of Artificial Intelligence (AI). A massively parallel supercomputer with 65,536 processors, it was the brainchild of Danny Hillis, conceived in the early 1980s while he was a doctoral student with Marvin Minsky at the MIT Artificial Intelligence Lab, and built at his start-up Thinking Machines Corporation. Departing from conventional computer architecture of the time, the CM-1 was modeled on the structure of a human brain: rather than relying on a single powerful processor to perform calculations one after another, the data was distributed over the tens of thousands of simple 1-bit processors, all of which could perform calculations simultaneously, an architecture known as Single Instruction Multiple Data (SIMD).

"What enabled the processors to communicate faster than previous SIMD designs was the internal network, a 12-dimensional boolean n-cube structure suggested by Nobel Prize physicist Richard Feynman², who spent his summers working with us. Within this hardwired physical structure, the software data structures for communication and transfer of data between processors could change as needed depending on the nature of the problem. The connections between processors were more important than the processors themselves, hence the name "Connection Machine."

fromTamiko Thiel's website: http://tamikothiel.com/cm/

What about (super)computers?

The equations of SM can be put on a computer. The theory must be described in a discrete space-time, a lattice is introduced.

Measurements of phenomenological quantities are conducted by evaluating observables across extensive sets of statistically relevant snapshots.

The original theory can be recovered in the limit for the lattice spacing going to zero

Typically the equations are solved using massively parallel supercomputers with many thousands of nodes to solve the equations.

bubbles in the vacuum

FOUANTUM THEORY CENTER SDU

http://www.physics.adelaide.edu.au/cssm/lattice/

A multiscale problem

Table of some baryons					
Particle	Symbol	Quark Content	Mass MeV/c ²	Mean lifetime (s)	Decays to
Proton	р	uud	938.3	Stable	Unobserved
Neutron	n	ddu	939.6	885.7±0.8	p + e⁻ + v¯ _e
Delta	Δ^{++}	uuu	1232	6×10 ⁻²⁴	π ⁺ + p
Delta	Δ^+	uud	1232	6×10 ⁻²⁴	π^{+} + n or π^{0} + p
Delta	Δ^0	udd	1232	6×10 ⁻²⁴	π ⁰ + n or π ⁻ + p
Delta	Δ-	ddd	1232	6×10 ⁻²⁴	π ⁻ + n
Lambda	Λ^0	uds	1115.7	2.60×10 ⁻¹⁰	π ⁻ + p or π ^o + n
Sigma	Σ+	uus	1189.4	0.8×10 ⁻¹⁰	π^{0} + p or π^{+} + n
Sigma	Σ ⁰	uds	1192.5	6×10 ⁻²⁰	Λ ⁰ + γ
Sigma	Σ-	dds	1197.4	1.5×10 ⁻¹⁰	π ⁻ + n

Table of Quarks

Name	<mark>Symbol</mark>	Charge	<mark>Spin</mark>	Mass	Strangeness	Baryon	Lepton
		(e)		MeV/c ²		number	number
up	u	+2/3	1/2	1.7-3.3	0	1/3	0
down	d	-1/3	1/2	4.1-5.8	0	1/3	0
strange	S	-1/3	1/2	101	-1	1/3	0
charm	С	+2/3	1/2	1270	0	1/3	0
bottom	b	-1/3	1/2	4190-4670	0	1/3	0
top	t	+2/3	1/2	172000	0	1/3	0

h THEORY CEN

Table of some mesons

Particle	Symbol	Anti- particle	Quark Content	Mass MeV/c ²	Mean lifetime (s)	Principal decays
Charged Pion	π+	π_	ud	139.6	2.60×10 ⁻⁸	μ ⁺ + ν _μ
Neutral Pion	π^0	Self	uu - dd	135.0	0.84×10 ⁻¹⁶	2γ
Charged Kaon	K ⁺	K⁻	$u\bar{s}$	493.7	1.24×10 ⁻⁸	μ^+ + v_μ or π^+ + τ
Neutral Kaon	K ⁰	<mark>К</mark> 0	ds	497.7		

Where N and a are problem dependent

the cost in one task: invert the Dirac operator

In <u>mathematics</u> and <u>quantum mechanics</u>, a **Dirac operator** is a <u>differential operator</u> that is a formal square root, or <u>half-</u> <u>iterate</u>, of a second-order operator such as a <u>Laplacian</u>.

It describes all <u>spin-1/2 massive particles</u>, called "Dirac particles", such as <u>electrons</u> and <u>quarks</u>

N ~ 10¹⁰ elements

"Numerical simulations have the reputation of being an approximate method that mainly serves to obtain qualitative information on the behaviour of complex systems.

This is, however, not so in Lattice QCD, where the simulations produce results that are exact (on the given lattice) up to statistical errors. The systematic uncertainties related to a non-zero lattice spacing and finite volume, still need to be investigated, but these effects are theoretically well understood, and can usually be brought under control."

"Lattice QCD -- From Quark Confinement to Asymptotic freedom" Plenary presentation at International Conference on Theoretical Physics , Paris UNESCO, July 2002 http://luscher.web.cern.ch/luscher/lectures/Paris02.pdf

FOUANTUM THEORY CENTER SDU F

Martin Lüscher,

Lattice QCD today

- Competitive Lattice simulations take place in the framework of 0 collaborations
 - Between 3 and 10 research groups
 - USA, Europe, Japan 0
 - Among the most successful HPC consumers all over the 0 world
- Coordinated to have access to substantial amounts of CPU time 0 and human resources to cope with:
 - Code development 0
 - Implementation of simulations 0
 - Data Analysis 0
- Enormous ingenuity is needed to progress on the algorithms 0 encompassing the physics of the problem
- Remains a task for individuals and small teams 0

SDUA

- USQCD (USA) : https://www.usqcd.org/
- RBC-UKQCD (USA, UK, Japan): http://rbc.phys.columbia.edu/
- MILC (USA + Europe): <u>http://www.physics.utah.edu/~detar/milc/</u>
- HPQCD (USA + Europe): <u>http://www.physics.gla.ac.uk/HPQCD/</u>
- ALPHA (EU): https://www.zeuthen.desy.de/alpha/
- BMW (EU): http://www.bmw.uniwuppertal.de/
- CP-PACS, JLQCD (Japan Tsukuba)
- openQCD (EU+USA+Taiwan): https://openlat1.gitlab.io/

efficiency has always been the key SDU 4

The good programmer will saturate one of the bounds (Cache Memory or Network) ... and then be unable to do any better

Lattice researchers have always been at the forefront of HPC activities designing innovative algorithms, stretching hardware and numerical capabilities and even designing new hardware when other solutions were not attainable.

hardware for QCD

(シ)) (ジー/1-ンタ) 高工研図書室 THE APE PR	CERN-TH.4283/85 ROM2F/85/28 JECT: A GIGAFLOP PARALLEL PROCESSOR	ELSEVIER
F	P.Bacilieri INFN-CNAF, Bologna, Italy	
S.Cabasino, F.M Dipartimento di INFN	arzano, P.Paolucci, S.Petrarca, G.Salina Fisica, Università di Roma "La Sapienza" - Sezione di Roma, Roma, Italy	CP-PACS:
N.Cabibbo Dipartimento di INFI F.Costantini, G.Fic Diparti INFI A		Kisaburo Na I * Department of Elect b Research Center for c Institute of Informa d University of Lib Recei
Dipartin INFN Dipartim	Status of the QCDSP project Dong Chen, ^a * [†] Ping Chen, ^a * Norman H. Christ, ^a * Robert G. Edwards, ^b * George R. Alan Gara, ^c [‡] Sten Hansen, ^d Chulwoo Jung, ^a * Adrian L. Kaehler, ^a * Anthony D. Kenne Gregory W. Kilcup, ^e * Yubing Luo, ^a * Catalin I. Malureanu, ^a * Robert D. Mawhinney, ^a John Parsons, ^c [‡] ChengZhong Sui, ^a * Pavlos M. Vranas ^a * [§] and Yuri Zhestkov ^a *	Abstract Computational parallel processor the University of 1
Rockf	 ^aColumbia University, New York, NY ^bSCRI, Florida State University, Tallahassee, FL ^cNevis Laboratories, Columbia University, Irvington, NY ^dFermi National Accelerator Laboratory, Batavia, IL 	PACS is 614.4 Gfl which at that time CP-PACS has each node process
	^e Ohio State University, Columbus, OH We describe the completed 8,192-node, 0.4Tflops machine at Columbia as well as the 12,288-node, 0.6T machine assembled at the RIKEN Brookhaven Research Center. Present performance as well as our exper in commissioning these large machines is presented. We outline our on-going physics program and explain the configuration of the machine is varied to support a wide range of lattice QCD problems, requiring a va- of machine sizes. Finally a brief discussion is given of future prospects for large-scale lattice QCD machines 1. INTRODUCTION The large computational requirements of lat- tice QCD coupled with the enormous cost/per- formance advantages that can be obtained with specially configured computer hardware have en- couraged the design and construction of a variety of purpose-built machines over the past nearly 18 years. The QCDSP machines now being com- pleted by our collaboration present a contin-	Thops ience i how ariety i. of 4 ⁴ r per uired which pinor s effi- that level eich is

ued development in this direction. The most recent, 12,288-node machine at the RIKEN Brookhaven Research Center has a construction cost of approximately \$1.8M and a peak speed of 0.6Tflops or a cost per peak perfor-

ar

of performance.) This high performance code is written in assembly language and uses many of the special hardware features provided to boost efficiency. However, the bulk of the conjugate gradient code which applies this Dirac operator, as well as the hybrid Monte Carlo evolu-

h THEORY CENTER SDUA

PARALLEL COMPUTING

Parallel Computing 25 (1999) 1635-1661

www.elsevier.com/locate/parco

A massively parallel processor at the University of Tsukuba

akazawa^{a,*}, Hiroshi Nakamura^b, Taisuke Boku^c, kuo Nakata^d, Yoshiyuki Yamashita^c

tronics and Computer Science, Meisei University, 2-590 Nagafuchi, Ohme, Tokyo 198-8655, Japan for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba,

Meguro-ku, Tokyo 153-8904, Japan tion Sciences and Electronics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba,

Ibaraki 305-8577, Japan brary and Information Science, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan

ved 2 October 1998; received in revised form 16 December 1998

Home / Proceedings / SAAHPC / SAAHPC 2011

Application Accelerators in High-Performance Computing, Symposium on

QUonG: A GPU-based HPC System Dedicated to LQCD Computing

Year: 2011, Pages: 113-122 DOI Bookmark: 10.1109/SAAHPC.2011.15

Authors

Roberto Ammendola
Andrea Biagioni
Ottorino Frezza
Francesca Lo Cicero
Alessandro Lonardo
Pier Stanislao Paolucci
Davide Rossetti
Francesco Simula
Laura Tosoratto
Piero Vicini

🛓 DOWNLOAD PDF

GENERATE CITATION

Abstract

QCDOC: A 10 Teraflops Computer for Tightl Calculations

system dedicated to Lattice QCD computations. QUonG is a massively parallel computing platform that lever-ages on commodity multi-core processors coupled with last generation GPUs. Its network mesh exploits the characteristics of LQCD algorithm for the design of a point-to-point, high performance, low latency 3-d torus network to interconnect the computing nodes. The network is built upon the APE net+ project: it consists of an FPGA-based PCI Express board exposing six full bidirectional off-board links running at 34 Gbns each, and implementing RDMA protocol and an

SHARE ARTICLE

P.A. Boyle, D. Chen, N.H. Christ, M. Clark, S.D. Cohen, C. Cristian, Z. Dong, A. Gara, B. Joo, C. Jung, C. Kim, L. Levkova, X. Liao, G. Liu, R.D. Mawhinney, S. Ohta, K. Petrov, T. Wettig, A. Yamaguchi

July 26, 2004

Abstract

Numerical simulations of the strong nuclear force, known as quantum chromodynamics or QCD, have proven to be a demanding, forefront problem in high-performance computing. In this report, we describe a new computer, QCDOC (QCD On a Chip), designed for optimal price/performance in the study of QCD. QCDOC uses a six-dimensional, low-latency mesh network to connect processing nodes, each of which includes a single custom ASIC, designed by our collaboration and built by IBM, plus DDR SDRAM. Each node has a peak speed of 1 Gigaflops and two 12,288 node, 10+ Teraflops machines are to be completed in the fall of 2004. Currently, a 512 node machine is running, delivering efficiencies as high as 45% of peak on the conjugate gradient solvers that dominate our calculations and a 4096-node machine with a cost of \$1.6M is under construction. This should give us a price/performance less than \$1 per sustained Megaflops.

QUonG is an INFN (Istituto Nazionale di Fisica Nucleare) initiative targeted to develop a high performance computing

Domain Decomposition in Hybrid MC was implemented in (2004-2006) Deflated DD implemented on Hybrid MC in 2007

a challenging numerical task

The physical masses of the up and down quarks are much smaller than the typical low-energy hadronic, generic methods will be not efficient.

A **deflation approach** takes advantage of approximate local coherence of the low modes, that allows highly effective **deflation subspaces generation**. The numerical effort required for the preparation of the subspace and deflation of the Dirac operator is then only of order of the volume

A **multigrid method** is an <u>algorithm</u> for solving <u>differential</u> <u>equations</u> using a <u>hierarchy</u> of <u>discretizations</u>. It is belongs to a class of techniques called <u>multiresolution methods</u>, efficient in tackling problems exhibiting <u>multiple scales</u> of behavior. h THEORY CEN

FLAG = Flavour Lattice Averaging Group

- The scope of FLAG is to review the current status of lattice results for a variety of physical quantities that are important for flavour physics.
 - Issued every 3 years
 - Composed of experts in Lattice Field Theory, Chiral Perturbation Theory and Standard Model phenomenology.
 - Aim: providing an answer to the frequently posed question "What is currently the best Lattice QCD value for a particular quantity?"
 - In a way that is readily accessible to those who are not expert in lattice methods. Generally not an easy question to answer.
 - Last revision 2021, update few months ago, Feb. 2023 (previous in 2019, 2016, 2013, 2010)
 - https://arxiv.org/pdf/2111.09849.pdf

SDU

FLAG 2023/24

Submission form

Figures for download

Quark masses

 V_{ud} and V_{us}

Low-energy constants

Kaon mixing

D-meson decay constants and form factors

B-meson decay constants. mixino parameters. and form

The strong coupling α_s

Nucleon matrix elements

Scale setting

the final message

- * Lattice QCD is a vibrant, modern, and active field of research
- Challenging problems ahead, which might require changing the working assumptions in HEP completely
- Working in Lattice QCD requires a combined understanding of Physics, parallel Supercomputers, modern mathematics,...
- Ideal for education of students

